1,120 research outputs found

    Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    Get PDF
    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model within the framework of large eddy simulation together with Lagrangian particle tracking. The particle drag coefficients are corrected depending on relative positions of the particles accounting for the strongest drag correction per particle but disregarding many-particle interactions. The approach is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels

    Waveguide Bandpass Filters for Millimeter-Wave Radiometers

    Get PDF
    A fundamental requirement for most mm-wave heterodyne receivers is the rejection of the input image signal which is located close to the local oscillator frequency. For this purpose we use a bandpass filter, which for heterodyne receivers is also called an image rejection filter. In this paper we present a systematic approach to the design of a waveguide bandpass filter with a passband from 100 to 110 GHz and upper rejection bandwidth in the range from 113 to 145 GHz. We consider two non-tunable filter configurations: the first one is relatively selective with 11 sections (poles) whereas the second one is simpler with 5 sections. We used established design equations to propose an initial guess for the geometries of the filters, optimized the geometries, constructed the filters using two different milling methods, measured their transmission and reflection characteristics, and compared the measurements with numerical simulations. Measurements of both filters agree well with simulations in frequency response and rejection bandwidth. The insertion loss of the 11-pole filter is better than 10 dB and that of the 5-pole filter is better than 5 dB. The 11-pole filter has a sharper attenuation roll-off compared with the 5-pole filter. The upper out-of-band rejection is better than 40 dB up to 145 GHz for the 11-pole filter and up to 155 GHz for the 5-pole filter

    On bias of kinetic temperature measurements in complex plasmas

    Get PDF
    The kinetic temperature in complex plasmas is often measured using particle tracking velocimetry. Here, we introduce a criterion which minimizes the probability of faulty tracking of particles with normally distributed random displacements in consecutive frames. Faulty particle tracking results in a measurement bias of the deduced velocity distribution function and hence the deduced kinetic temperature. For particles with a normal velocity distribution function, mistracking biases the obtained velocity distribution function towards small velocities at the expense of large velocities, i. e., the inferred velocity distribution is more peaked and its tail is less pronounced. The kinetic temperature is therefore systematically underestimated in measurements. We give a prescription to mitigate this type of error

    Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    Get PDF
    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D-alpha (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally

    Effects of a brief multimodal online intervention on the intention to conduct sun protective behaviours through targeting illness representations about skin cancer

    Get PDF
    __Objective:__ The incidence of skin cancer can be reduced by increasing sun protective behaviours. Based on the Common-Sense Model and the Intervention Mapping approach, a brief intervention targeting illness representations about skin cancer to increase the intention to conduct sun protective behaviours was developed and evaluated regarding its effectiveness. __Design:__ A randomized pre-post control group design with 509 healthy participants (69% women, mean age 39 years). Main outcome measures: Changes in illness representations about skin cancer (emotional representations, illness coherence, and prevention control) and the intention to conduct sun protective behaviours, i.e. UV protection and sun avoidance. __Results:__ ANCOVAs showed that the intervention increased illness coherence and perceived prevention control as well as the intention to conduct sun protective behaviours. Mediation analyses revealed that the increase in illness coherence and/or perceived prevention control partially mediated the effect of the intervention on the increase of the intention to use UV protection and to avoid sun exposure. __Conclusion:__ The intervention was successful in changing illness representations and thereby increasing the intention to conduct sun protective behaviours. The findings provide evidence for the usefulness of the Common-Sense Model in the context of illness prevention

    Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak

    Get PDF
    The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de EconomĂ­a y Competitividad. FIS2015-69362-

    Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    Get PDF
    We present the first measurement of a local fast-ion 2D velocity distribution function f (v , v⊄). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f (v , v⊄) by tomographic inversion. Salient features of our measurement of f (v , v⊄) agree reasonably well with the simulation: the measured as well as the simulated f (v , v⊄) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f (v , v⊄) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f (v , v⊄) by tomographic inversion
    • 

    corecore